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Abstract 

This study explored the effects of external anchor test length on final equating results of several 

equating methods, including equipercentile (frequency estimation), chained equipercentile, 

kernel equating (KE) poststratification PSE with optimal bandwidths, and KE PSE linear (large 

bandwidths) when using the nonequivalent groups anchor test (NEAT) design. This study used 

pseudotests constructed of item responses from a real operational test. The equating methods 

were evaluated using an equating criterion. Conditional differences between the criterion scores 

and equated scores, and root mean square error of the differences (RMSE) were used as 

measures to compare the methods to the criterion equating, which in this study is an equivalent 

groups (EG) equipercentile equating function. The results indicate that bias tended to increase in 

the conversions as the anchor test length decreased, but the KE PSE with optimal bandwidths 

and equipercentile (frequency estimation) methods were less sensitive to this change than the 

other methods. The KE PSE linear method with large bandwidths performed poorly compared to 

the criterion across all anchor test lengths. 

Key words: Kernel equating, NEAT design, equipercentile equating, equating bias, difference 

that matters, anchor test length 
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Introduction 

In practical equating situations, the most common equating design is the nonequivalent 

groups anchor test (NEAT) equating design, which uses a set of common anchor items to adjust 

for differences in test difficulty. Use of this design is critical to equating test forms in most large-

scale testing programs, because test forms are not equivalent (i.e., parallel), nor can it always be 

assumed that population parameters will remain stable over time; thus the samples of test takers 

cannot be assumed to be equivalent over time.  

The anchor test ideally acts as a surrogate, both substantively and statistically, for either 

the remaining items in the test forms (internal anchor) or the items on which the test form scores 

are based (external anchor; Cook & Peterson, 1987). In general, a longer anchor test is 

considered desirable, because it is more reliable and it tends to generate fewer random equating 

errors (Budescu, 1985).  

Practitioners can choose from many equating methods for the NEAT design. These 

include popular equating methods, such as the equipercentile frequency estimation and chained 

equipercentile methods (among many others), as well as newer methods such as kernel equating 

(KE). Kernel equating is a variation on classical equipercentile observed-score equating that 

employs a Gaussian kernel to continuize the discrete observed score distributions (von Davier, 

Holland, & Thayer, 2004). 

The purpose of this study is to explore the effect of external anchor test length on final 

results of several equating methods, including equipercentile (frequency estimation), chained 

equipercentile, KE poststratification (PSE) with optimal bandwidths (which emulates the 

frequency estimation equating), and KE PSE linear (KE PSE with large bandwidths, which 

emulates the 1982 Braun and Holland linear equating method). The KE version of chained 

equating was not included in this study due to software limitations. Especially of interest was the 

behavior of the KE functions when the length of the external anchor was varied, because no 

empirical reports currently exist regarding the relationship between KE equating performance 

and anchor test length.  

Real data taken from operational testing results were used in this study. Items from actual 

operational test forms were selected to create two pseudotest forms and anchor sets of varying 

lengths (see the appendix). Creating the pseudotest forms provided an opportunity to use real 

data in a systematically controlled way. 
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In the NEAT design, the two most important test scores from Forms X and Y (the forms 

to be equated) are each observed only on population P (the group who takes Form X) or only on 

population Q (the group who takes Form Y), but not on both. However, an anchor test A is taken 

by the groups of examinees from both populations. Thus, X and Y are not both observed on the 

target population T, and A is observed in both, and therefore, A will be used to adjust for the 

differences in overall difficulty between X and Y (see Table 1). Assumptions must be made in 

order to overcome the lack of complete information in the NEAT design. Any equipercentile 

equating method used with the NEAT design makes acceptable and sufficiently strong 

assumptions that allow one to find values for the cumulative distribution functions (cdfs) of X 

and Y in population T, FT(x) and GT(y), respectively. Similarly, any linear equating method for 

the NEAT design relies on untestable assumptions about the missing data in order to estimate the 

means, variances, and eventually the covariances of the variables X, Y, and A. 

Table 1 

Research Design  

Nonequivalent anchor test (NEAT) Equivalent groups 

(combined group) 

Target 

population 

Original 

populations 

X Ai Y X Y 

P √ √ (√) √ √ 
Ta

Q (√) √ √ √ √ 

Note. Shaded boxes indicate existing data that were not used for equating. Because both test 

forms were created from one original test form, both groups had data for both test forms. 
aUnder the equivalent groups design, the target population T was calculated by combining 

populations P and Q using the formula T = wP + (1 – w)Q, where w is the proportional weight 

for population P. 

In other equating and test linking designs, such as equivalent groups or single group 

designs, the target population is simply the group from which the examinees are sampled. In 

those cases, we may estimate FT(x) and GT(y) directly from the observed data. In the NEAT 

design, however, assumptions that are not directly testable must be added to the mix. 
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Kernel Equating Framework 

KE is an equipercentile equating procedure in which the score distributions to be equated 

are converted from discrete distributions to continuous distributions by using a normal 

(Gaussian) kernel as opposed to using linear interpolation, as in the traditional equipercentile 

equating method (Holland & Thayer, 2000; von Davier et al., 2004). The KE framework consists 

of five procedural steps: presmoothing the data using loglinear models; computing the marginal 

score probabilities for X, Y, and eventually for A (for chained equipercentile); continuizing the 

frequency distributions using the Gaussian kernel; computing the equipercentile equating 

function using these continuous distribution functions; and eventually, computing the accuracy 

measures such as the standard errors of equating (SEE) and the standard errors of equating 

differences (SEED), as shown in von Davier et al. (2004). 

The main difference between the KE method and the traditional equipercentile method 

depends on the continuization step. Kernel equating was devised originally as a solution to a 

problem arising from the equipercentile definition of equated scores. By this definition, Score x 

on Form X and Score y on Form Y are equated in a population of test-takers if and only if they 

have the same percentile rank in that population. But in the real world of educational testing, it is 

rare to find a score on Form Y that has exactly the same percentile rank in the test-taker 

population as Score x on Form X. This problem arises because the score distribution on a given 

test form is discrete. The KE method replaces the discrete score distributions with continuous 

distributions and then equates scores on the continuous distributions.  

Basically, by adding a continuous random variable V distributed N (0, 1), the discrete 

random variables X and Y are transformed into continuous variables and as: )( XhX )( YhY

XXXXX aVhXahX μ)1()()( −++= and YYYYY aVhYahY μ)1()()( −++= , respectively. 

In the above formulas, hX and hY can be any positive number. They are the bandwidths of 

the continuous distributions for each discrete score; Xμ and  denote the mean and variance of 

variable X over target population T; 

2
Xσ

22

2
2

XX

X
X h

a
+

=
σ
σ  is an adjusting constant that insures that the 

mean and variance of are the same as those of X. Since the variable V has a continuous 

normal distribution, it is obvious that 

)( XhX

VhX X+ will be continuous, and so is . Similar 

notations are used for . 

)( XhX

( )YY h
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The selection of hX (or hY) determines the equating method. The KE PSE optimal 

(equipercentile) equating method selects optimal values for hX (or hY) automatically by 

minimizing the difference between the probability distributions of X (or Y) before and after 

continuization (and by using some additional penalty functions—see von Davier et al., 2004). 

The KE PSE equating method approximates a linear method by using large bandwidths, values 

that are usually larger than 10 times the standard deviation of the distribution to be continuized. 

Equating Criterion 

The evaluation of any equating method requires the use of one (or several) equating 

design(s) where the equating criterion is known (Harris & Crouse, 1993). In practice it is very 

difficult to find a known criterion for equating, particularly in a study where real data are used. 

Here we use extended data from pseudotests that were initially constructed and described in von 

Davier et al. (2005). A single long test form was used at two different administrations to two 

nonequivalent groups; the items of this test were used to construct two different shorter forms 

that differed in difficulty and three anchor tests that differed in length. Using this design, we 

have data from two forms that can be equated using a NEAT equating design and can also be 

equated using an equivalent group design (EG) in the combined group. The study design is 

summarized in Table 1. 

To provide a criterion for the accuracy of the anchor equating methods, we used the 

classical equipercentile equating method to equate the presmoothed (with log-linear models) 

distributions of scores on the forms in the EG design (i.e., the combined group of examinees 

from the two test administrations) as the basis for our evaluation of the equating results from the 

other conditions.  

It is recommended to explicitly define the target population T for a given equating design. 

In this study where we are interested in evaluating the equating methods in a NEAT design, T is 

assumed to be a mixture of P and Q, in which P and Q are regarded as nonoverlapping, 

nonequivalent subpopulations, which make up T. P and Q are given weights that sum to 1, which 

could be proportional to their relative population sizes. This is denoted by T = wP + (1 – w)Q, 

where w is the relative weight of population P in population T. The criterion equating should be 

done on the same population as was used for the equating methods we are interested in 

evaluating. Therefore, the criterion equating design, the EG design, was computed by pooling the 

data from the two administrations, insuring that the target population T is of the form T = wP + 
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(1 – w)Q , with the w determined by the relative size of the samples from P and Q (i.e., w = 

nP/(nP + nQ), where nP and nQ are the sample sizes of the samples from P and Q, respectively). 

The score distributions computed for P and Q separately are weighted by w and (1-w) to obtain 

distributions of these same quantities for T. See Table 1 for the illustration of the NEAT design 

and of the EG design obtained from combining the groups.  

von Davier et al. (2005) investigated whether, in order to define an equating criterion, 

one should check if the criterion equating in the combined group is the same as the equatings 

inside each of the groups. The results of these additional equatings are given in Appendix B in 

von Davier et al. (2005) and show that the equatings are similar in the score range where the data 

are available. However, the authors consider that “these analyses check a population invariance 

assumption and cannot influence the choice of the criterion. The choice of the equating criterion 

is based on a decision about the appropriate target population and eventually, about the 

appropriate shape of the equating function.” (von Davier et al., 2005, p.10). 

Assessing Equating Methods Relative to the Criterion 

The effects of external anchor test length will be examined in this study through measures 

of conditional differences between the criterion scores and equated scores at each raw scale score 

point, as well as global measures such as the root mean square error of the differences (RMSE). 

It is helpful to have guidelines to aid in interpretation of the results of these analyses. One 

practical guideline is the use of the difference that matters (DTM; Dorans & Feigenbaum, 1994), 

which has been used in previous equating research (e.g., Ricker & Gierl, 2005; von Davier & 

Han, 2004). Briefly stated, Dorans and Feigenbaum (1994) defined a DTM as any score 

difference that would make a difference in score reporting once scores were rounded. In this 

study, where only raw scores are being considered, a DTM is defined as any score difference that 

is equal to or greater than 0.5. 

Method 

Instrument, Sample, and Test Construction 

The initial test form used for this study was a national assessment that is used for 

professional licensure purposes. The 119-item four-choice multiple-choice test is composed of 

four content categories. Each category contains about 30 items.  

Two separate samples of examinees from different test administrations form populations 

P and Q. The difference in scores in the two samples/populations, as measured by this total test, 
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was about 0.27 of the (average) standard deviation on the test form. In both samples, the 119-

item test form was split in order to construct two unique test forms, X and Y, and an anchor A. 

Test Forms X and Y were parallel in content but were intentionally designed to differ in 

difficulty, requiring one test to be equated to the other to place them on a common scale. The 

mean percent correct in the total sample T for X was 80.98, and for Y it was 61.71 (Table 2). The 

mean percent correct of the anchor test A was 69.53 (Table 3). In addition to summary statistics, 

differential item functioning (DIF) analyses (using the Mantel-Haenzsel criterion; Dorans & 

Holland, 1993) for gender and administration date were performed. No items were flagged for 

significant DIF. The items selected for Forms X and Y and for Anchor A are identified in the 

appendix. 

Table 2 

Summary Statistics for the Observed Frequencies of Test Forms X and Y in Populations P, Q, 

and T 

  
P 

(N = 6,168) 
Q 

(N = 4,237) 
T 

(N = 10,405) 

  X Y X Y X Y 
Mean 35.12 26.59 36.38 27.97 35.63 27.15 
Mean (%) 79.82 60.40 82.68 63.57 80.98 61.71 
SD    5.69   6.68   4.77   6.29   5.37   6.56 
Skewness –0.96 –0.10 –1.09 –0.27 –1.04 –0.18 
Kurtosis   3.77   2.45   4.54   2.59   4.13   2.49 
Obs. min 8 7 10 8 8 7 
Obs. max 44 43 44 43 44 43 
Alpha reliability   0.81   0.81   0.77   0.79   0.80   0.80 

Equating Methods 

Loglinear models were used to separately smooth the data for all equating methods; five 

moments of the univariate distributions (for the EG design) and the four moments of the 

marginals of the bivariate distributions (for the NEAT design) were preserved (Holland & 

Thayer, 2000). In the original investigation, examination of fit statistics provided evidence that 

there was a significant benefit in preserving four moments for the interaction rather than just one 

(von Davier et al., 2005). 
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Table 3 

Sample Sizes, Means, Means as a Percentage of Total Score, Standard Deviations, and Alpha 

Reliabilities of the Scores on A1, A2, and A3, in P, Q , and T 

 P 
(N = 6,168) 

Q 
(N = 4,237) 

T 
(N = 10,405) 

 A1 A2 A3 A1 A2 A3 A1 A2 A3

Mean 16.03 13.66 10.84 17.00 14.48 11.50 16.43 13.99 11.11 

Mean (%) 66.79 68.30 67.75 70.83 72.40 71.88 68.46 69.95 69.44 

SD 4.19 3.55 3.01 3.85 3.30 2.82 4.09 3.47 2.95 

Alpha reliability 0.75 0.71 0.68 0.73 0.69 0.66 0.75 0.71 0.68 

In the NEAT design, the following analyses were conducted for equating X scores to Y 

scores: equipercentile (frequency estimation) equating, chained equipercentile equating, KE PSE 

with optimal bandwidths that approximates the frequency estimation equating method, and KE 

PSE linear with large bandwidths that approximates the Braun and Holland (1982) linear 

equating method. In the EG design, which acted as the criterion, equipercentile (frequency 

estimation) equating was used. Given the differences in the shapes of the distributions between X 

in P and Y in Q that existed in our data, a nonlinear conversion is an appropriate choice as a 

criterion over one that is linear. 

Because both Forms X and Y were created from one parent form, data existed for equating 

via both an EG and a NEAT design (See Table 1). For the EG design, data from both P and Q were 

used for equating. For the NEAT design, scores from X on P were equated to scores from Y on Q. 

Both X and Y contained 44 unique items. An additional set of items, A, which was substantively 

representative of X and Y, acted as an external anchor to X and Y for equating using the NEAT 

design. The length of A was varied to three sizes: (a) 24 items, (b) 20 items, and (c) 16 items. 

Results 

Summary Statistics 

Because the original test form was split into two forms X and Y, data for P and Q existed 

for both test forms. Raw summary statistics for X and Y in both P and Q, are presented in Table 2. 

Overall, sample Q performed better on both test forms. P had mean scores of 35.12 (SD = 5.69) 

and 26.59 (SD = 6.68) for forms X and Y respectively, while Q had mean scores of 36.38 (SD = 
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4.77) and 27.97 (SD = 6.29) on forms X and Y respectively. In the target population T, X (M = 

35.63, SD = 5.37) was less difficult than Y (M = 27.15, SD = 6.56) by 8.48 points (about one and 

one-half standard deviations). When expressed as percent correct, the mean raw scores were 79.82, 

82.68, and 80.98 on X and 60.40, 63.57, and 61.71 on Y in P, Q, and T, respectively. The 

reliabilities of X and Y ranged from 0.77 to 0.81 across P, Q, and T.  

The examinees sampled from Q also outperformed those from P on the anchor, and the 

scores were consistent across all anchor lengths (see Table 3). In P, the mean percent correct was 

66.80, 68.28, and 67.76, while in Q, the mean percent correct was 70.85, 72.39, and 71.86 for the 

24-, 20- and 16-item anchor tests, respectively. In T, the mean percent correct was 68.45, 69.95, 

and 69.43 for the 24-, 20- and 16-item anchor tests respectively. The correlations between each 

form and anchor test length were relatively high, ranging between 0.71 and 0.79 (see Table 4) in 

P, Q, and T. As expected, the correlations between the anchor and total test decreased as the 

number of items in the anchor test decreased from 24 to 16 items. Similarly, the reliabilities also 

decreased in P, Q, and T as the number of items in the anchor test decreased. In the 24-item 

anchor, reliabilities ranged from 0.73 to 0.75, while in the 16-item anchor reliabilities ranged 

from 0.66 to 0.68.  

Table 4 

Correlations Between Test Forms X, Y, and Anchor Tests A1, A2, and A3 in Populations P, Q, 

and T 

Correlation P 
(N = 6,168) 

Q 
(N = 4,237) 

T 
(N = 10,405) 

(X, A1) 0.78 0.77 0.74 
(X, A2) 0.76 0.75 0.72 
(X, A3) 0.75 0.74 0.71 
(Y, A1) 0.79 0.78 0.76 
(Y, A2) 0.77 0.76 0.74 
(Y, A3) 0.76 0.75 0.73 

Equating Conversions 

Figures 1, 2, and 3 display the equating functions for the criterion EG equipercentile 

method and all NEAT equating methods for the 24-, 20- and 16-item anchor length conditions 

respectively. These graphs indicate very little difference in the results between the criterion and 
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nonlinear methods, equipercentile, chained equipercentile, and KE PSE (optimal bandwidth). 

The KE PSE (large bandwidth) method created a linear equating function, which was very 

similar to the other methods in the region of the mean test scores but differed from the other 

methods in other regions, particularly in the lower scores. The same pattern of results was 

observed across all external anchor lengths. 

Differences Between Criterion Function and Method Function 

Figure 4 illustrates the differences in performance of each equating method across the 

raw score scale when a 24-item external anchor was used. These results are representative of the 

relative performance of all of the methods across external anchor lengths. With a 24-item 

external anchor, the nonlinear methods—equipercentile, chained equipercentile, and KE PSE 

optimal bandwidths—all produced conversions that were very similar to the criterion, and once 

rounded, the scores would have been indiscernible from each other and from the criterion (i.e., 

smaller than DTM). The linear method KE large h did not meet the criterion well, and it 

produced differences much larger than the other methods across most of the scale. 
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Figure 1. Equating functions for criterion (EG equipercentile) and all other NEAT 

equating methods with 24-item external anchor. 
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Figure 2. Equating functions for criterion (EG equipercentile) and all other NEAT 

equating methods with 20-item external anchor. 
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Figure 3. Equating functions for Criterion (EG equipercentile) and all other NEAT 

equating methods with 16-item external anchor.  
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Figure 4. Conditional difference at each raw scale score point (relative to EG equipercentile 

criterion) of equipercentile, KE PSE with optimal h, KE PSE with large h, and chained 

equipercentile equating methods as a function of raw score with a 24-item external anchor.  

Figures 5–8 depict the performance of each method relative to the criterion across 

external anchor test lengths. Figure 5 shows the differences for KE PSE with optimal 

bandwidths. As the anchor test length decreased, the conversion became more different from the 

criterion across the entire score scale. At 24 and 20 items, the differences were smaller than a 

DTM, with the exception of score points 29–31 with a 20-item external anchor. With 16 items, 

score differences were larger and would therefore be observable except at the extreme low and 

high ends of the score scale. 

Figure 6 shows the differences for equipercentile (frequency estimation) equating. The 

results were very similar to KE PSE optimal, but were larger than a DTM at score points 28-34 

with a 20-item external anchor. With a 16-item external anchor, the differences were larger than 

DTM except at the high end of the score scale. Figure 7 shows the chained equipercentile equating 

differences. When the anchor test length was 24 or 20 items, the differences were smaller than a 

DTM across the entire score scale. With a 16-item anchor, the differences were also smaller than a 

DTM, except from points 0-15 on the raw score scale, where the differences observed were larger 

than those observed in either equipercentile or KE PSE optimal equating. Figure 8 shows the 

differences for KE PSE large h. This method had detectable score differences (relative to the 

criterion equating function) for all anchor test lengths across the entire score scale. 
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Figure 5. Conditional difference at each raw scale point (relative to EG equipercentile 

criterion) of NEAT KE PSE with optimal bandwidths as a function of raw score for 24-, 

20-, and 16-item external anchor test lengths. 
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Figure 6. Conditional difference at each raw scale score point (relative to EG equipercentile 

criterion) of NEAT equipercentile (frequency estimation) equating as a function of raw 

score for 24-, 20-, and 16-item external anchor test lengths.  
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Figure 7. Conditional difference at each raw scale score point (relative to EG equipercentile 

criterion) of NEAT chained equipercentile equating as a function of raw score for 24-, 20-, 

and 16-item external anchor test lengths.  
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Figure 8. Conditional difference at each raw scale score point (relative to EG equipercentile 

criterion) of NEAT KE PSE with large h as a function of raw score for 24-, 20-, and 16-item 

external anchor test lengths. 
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Root Mean Square Difference  

No large differences in any of the equating functions were observed across anchor test 

lengths. 22
dsddRMSE += , where d is the mean of the conditional equating differences for 

each NEAT equating method with the criterion and sd is the standard deviations of these 

differences.  

Measures of RMSE indicate that the equipercentile, chained equipercentile, and KE PSE 

(optimal bandwidth) methods produced small errors in comparison to the KE PSE (large 

bandwidth) method (see Table 5). Comparing each method across anchor test lengths, the 

chained equipercentile method produced the smallest RMSE at 24- and 20-item anchor lengths 

(0.19 and 0.16, respectively, but when the anchor length was reduced to 16 items, the error 

increased dramatically, and it had the largest RMSE (0.76). The equipercentile frequency 

estimation (0.32, 0.39, and 0.54 for 24, 20, and 16 items, respectively) and KE PSE with optimal 

bandwidths (0.30, 0.36, and 0.51 for 24, 20, and 16 items, respectively) also had an increased 

RMSE as the anchor test length decreased, though to a much lesser extent. The RMSE for KE 

PSE (large bandwidth) remained relatively constant across anchor test lengths, but was much 

larger than that for the other, nonlinear equating methods (7.82, 7.64, and 7.43 for 24, 20, and 16 

items, respectively). 

Table 5 

Root Mean Square Difference (Error; RMSE) as a Function of Method and Anchor Test 

Length Versus the EG Equipercentile Criterion 

A1 A2 A3Method 
24 items 20 items 16 items 

Equipercentile 0.32 0.39 0.54 

Chained 
equipercentile 

0.19 0.16 0.76 

KE PSE—optimal 0.30 0.36 0.51 

KE PSE-large h 7.82 7.64 7.43 

Note. 2 2
dRMSE d sd= +  
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Discussion 

Anchor Test Length 

In general, the equating bias associated with each method increased, but not dramatically 

so, as the anchor test length decreased, with the exception of the chained equipercentile method. 

The bias associated with this method increased as the number of anchor items dropped from 20 

to 16. This result is not surprising, given that this procedure chains the forms together via 

equating each form to the common items, making anchor length a more important factor than for 

the other methods (Kolen & Brennan, 2004). The linear KE PSE (large bandwidth) method 

produced the largest errors when compared to the criterion, especially in RMSE, which was also 

expected given that it produces a linear equating function while all of the other methods 

(including the criterion) are nonlinear. The results for this method would likely look more 

promising if compared against a linear criterion.  

The modest changes in the equating robustness of the equipercentile frequency estimation 

and both KE PSE methods, which rely on relatively stable correlations between the test forms 

and anchor forms as the anchor length decreases, are likely attributable to excellent test 

construction. These methods rely on the invariance of the conditional distributions of the forms X 

and Y on the anchor A across P and Q. Budescu (1985) suggested that the correlation was the 

most important factor in managing equating error. Another related factor is that the reliabilities 

of A did not decrease a great deal across different anchor test lengths (Table 3). 

The KE PSE with large h method had an observed RMSE that was much larger than 

those observed for the other methods. This result occurred largely because this method is linear, 

while the other methods and the criterion equating method are nonlinear. The KE PSE with large 

h does a poor job of aligning scores in the lower end of the score scale where there were no data, 

but was much closer, though still not as accurate, in the region where most of the data were 

present (raw scores of approximately 27-41). Given that X and Y differed in distribution shape, 

using a linear conversion was not appropriate. 

Influence of Criterion Selection 

Whenever a criterion is selected, the choice of criterion will ultimately influence the 

results. The EG/combined group method was chosen to preserve the common population for 

which the conversion holds. The equipercentile method was chosen because the two forms, X 
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and Y, differed in means, variances, and skewness. The polynomial loglinear model that fits the 

first five moments for each univariate distribution was chosen based on various fit statistics. 

The results of this study suggest that the results using KE PSE with optimal bandwidths, 

equipercentile frequency estimation, and chained equipercentile in a NEAT design produced 

very similar results to the EG equipercentile equating, particularly at the high and low ends of 

the score scale, with 24- and 20-item anchors. The interpretation of this result must be made 

carefully, because a cursory look might conclude that the NEAT equating methods were most 

accurate in the low and high regions of the score scale. In reality, the criterion EG equipercentile 

would be expected to produce an extremely accurate conversion in the region where most of the 

data were observed, with less accuracy at high and low scores, because there are fewer cases in 

those regions.  

Conclusions  

Practitioners are frequently faced with choosing the best equating method for a particular 

application when using a NEAT design, without the benefit of having an EG criterion to help 

guide the decision-making process. Practitioners might also face a trade-off between maximizing 

the anchor length for statistical purposes and minimizing it for other considerations, including 

test security and item datedness. These results suggest that the choice of equating method can 

change the amount of error present in the test scores, particularly with shorter anchor lengths (in 

this case, 16 items). Overall, the KE PSE with optimal bandwidths method performed 

comparably with classical and chained equipercentile methods in the NEAT design when the EG 

equipercentile method was used as a criterion. On the other hand, KE PSE with large bandwidths 

performed poorly when compared to the nonlinear criterion. 
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Appendix 

Test Form Construction for Forms X, Y, and Anchor Test A 

X A Y 

Category I  

1, 5, 6, 7, 8, 9, 11, 23, 

24, 25, 30 

Six item set: 3, 10, 14, 15, 17, 18 

Five item set: 3, 10, 14, 17, 18 

Four item set: 3, 10, 14, 18 

2, 4, 12, 13, 19, 20, 

21, 26, 27, 28, 29 

Category II 

31, 33, 34, 40, 44, 46, 

47, 49, 51, 54, 60 

Six item set: 32, 42, 43, 52, 55, 58 

Five item set: 42, 43, 52, 55, 58 

Four item set: 42, 43, 52, 58 

35, 37, 38, 41, 45, 

48, 50, 53, 56, 57, 59 

Category III 

61, 63, 66, 67, 69, 77, 

78, 83, 86, 87, 90 

Six item set: 64, 71, 73, 74, 76, 79 

Five item set: 64, 71, 74, 76, 79 

Four item set: 64, 71, 74, 79 

62, 65, 68, 70, 72, 

75, 80, 81, 82, 85, 88 

Category IV  

92, 93, 95, 99, 103, 

105, 106, 108, 113, 

114, 118  

Six item set: 91, 98, 101, 107, 110, 120 

Five item set: 91, 98, 101, 110, 120 

Four item set: 91, 98, 101, 110 

94, 96, 97, 100, 102, 

104, 109, 112, 115, 

116, 117 
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